Thursday 9 August 2012

Design-and-Production-Process-Project (HEMANTH)








IE DESIGN ASSIGNMENT

DESIGN OF EARTHQUAKE RESISATNT BUILDING



BY

JEETU RANA(roll no 39)

HEMANTH KUMAR(roll no 36)





ABSTRACT

          In this project work, an attempt has been made to plan and design a G+4 storied shopping complex building. This project work involves planning, analysis, designs, drawings and estimation of a typical multistoried building.

The salient features of the G+4 storied building are as given below the basement floor is 1.20m above the existing ground level. The shopping complex consists of G+4 floors with 3.60m ceiling height. The carpet area available in each floor is 1220sq.m.

This shopping complex having all facilities under one roof, designed with shops, Super market, Food court, Net point, Gym, Table tennis court, Coffee shop with ample car parking  etc, with very good water supply and sanitary arrangements.

           The planned five storey commercial building frame in modeled in STAAD Pro.Various load combinations are included in the frame analysis and the lateral loads are calculated by seismic coefficient method for the earthquake zone III with response reduction factor 3. The amount of concrete and steel required along with the total cost of the building is calculated.

          The structural design has been manually done. The estimate of the building is prepared on the basis of plinth area rate. Necessary structural drawings are enclosed at appropriate places. 







INTRODUCTION

1.1. SCOPE & IMPORTANCE:

                    Shopping and Entertainment is an important for each and every one. But they have short of time, so they need a shopping complex under one roof to save the valuable time.

1.2. LOCATION:                                                                                                                                                                                                                                                      

                    We have decided to choose the site for the construction of shopping complex at Vadapalani in Chennai city.

                    The site accommodates the following special feature.

Ø Land is available in the centre of city.

Ø The site is located in main road.

Ø 24 hour transportation facilities available.





3.2. ANALYSIS:

3.2.1. MATERIAL:

Grade of reinforcement              : Fe415

Grade of concrete                      : M25

Density of concrete                    : 2500Kg/m3

3.2.2. LOADING:

Dead load:

          Partition wall and other external walls, floor finish etc., as per the provisions of IS: 875-1987(part I)

Superimposed load:

          As per the provisions of IS: 875-1987(part II)

          For Commercial Buildings (AL)       = 4.00 KN/m2

Seismic load

Dead load + part of live load     =        DL+0.5LL

3.2.3. CODES:

           Concrete design                        :         IS: 456-2000

            Steel design                             :         IS: 800-1984

3.2.4. PARTIAL SAFETY FACTORS:

Load factors:

For dead load                                       =        1.50

For live load                                                  =        1.50

The above partial safety factors are taken from IS: 456-2000

Material safety factor:

For reinforcement steel                        =        1.15

For concrete                                         =        1.50

3.2.5. LOAD CALCULATION:

Dead load:

At any floor level except ground floor (per m width)

Load from slab                          =        0.15 x 23.5       = 3.525 KN/m2 (assuming 150mm thickness)

Partitions (G.F)                          =        0.23 x 4.20 x 20 =19.32 KN/m

Partitions (F.F TO F.F)              =        0.23 x 3.00 x 20 =13.80 KN/m

Partitions (Terrace floor)           =        0.23 x 1.00 x 20 =4.60 KN/m

Floor finishes                             =        1.00 KN/m2

Floor finishes (Terrace floor)     =        2.00 KN/m2

B) Live load

For Commercial Buildings        =         4.00 KN/m2

C) Seismic load

Dead load + part of live load     =        DL+0.5LL

3.2.6. ANALYSIS ABOUT STAAD Pro:

   4.2. LIMIT STATE METHOD:

          Limit state of Design is a further improvement of ultimate load design in the limit state methods a structure is designed to with stand all loads like to act on it in the duration of its life span and also to satisfy the service requirements like deflection and limitation of crack width, limit means an acceptable limit, for the safety and serviceability requirements before anything can occur.

          The design provides a condition that the structure will not become unfit for use for which it is meant or in other words the structure will not reach a limit state.

          The entire limit state  that are relevant are considered in the design to ensure an adequate degree of safety and serviceability, the structure in general shall be designed on the basis of the most critical state and shall also be checked for other limit states.

4.2.1. LIMIT STATE OF COLLAPSE:

The design on limit state of collapse provides the necessary safety of the structure against partial or total collapse of the structure.

4.2.2. LIMIT STATE OF SERVICEABILITY:

          This limit state is introduced to prevent objectionable deflection and cracking.

4.2.3. CHARACTERISTICS STRENGTH OF CONCRETE:

Grade
M15
M20
M25
M30
M35
M40

Fck
N/mm2
15
20
25
30
35
40



4.2.4. CHARACTERISTICS STRENGTH OF STEEL:


Grade


Fe250

Fe415

Fe500
fyN/mm2
250
415
500




4.2.5. CHARACTERISTIC LOADS:

           Characteristics load means the value of the load, which has a 95 percent probability of not being exceeded during the life of the structure.

Characteristics load is the weight of the structure itself. Characteristic live load and wind load are taken as per IS875-1964 characteristic seismic loads are taken as per 1873-1975.

4.2.6. OBJECTS OF LIMIT STATE DESIGN:

          The object of limit state design is the guarantee adequate safety consistent with economy against the structure being rendered unfit for service due to cracking, deflection, failure and such other cases. A limit sate corresponds to each of the states in which the structure becomes unfit.





5. DESIGN OF BEAM

5.1. DESIGN OF BEAMS BY MANUAL (Beam No: 303):

Step - 1

Width of Beam      =        300 mm

Over all depth of Beam    =        600m

Thickness of slab, Df       =        150mm

Breadth of web, bw                         =        300mm

Concrete grade                 =        M25

Steel grade                       =        Fe415

Step – 2: 

Bending moment and shear force

Negative moment @ interior support             =       170.806 kNm



Positive moment @ centre of span                 =        367.60 kNm

Maximum shear force at its support, Vu         =        224.952 kN

Limiting moment of Resistance

Mulimit          =        0.138fck bd2

                                        =        0.138 x25x300x5502

Mulimit          =        313.088 kNm

Mu limit         <        Mumax

Hence the section is designed for doubly reinforced.



Mu2               =        367.60-313.088

=        54.512kN.m

Ast calculation:

                    Mu                =       0.87 fy Ast d (1- (fyAst/fckbd))

313.088x106          =        0.87 x 415 x Ast x 550 (1- (415 x

Ast / 25x300x550))

          313.088 x 106            =        198577.5 Ast – 19.978 Ast2

                              Ast1              =        1965.19 mm2

Use 25mm dia bars

No of bars required         =        Ast / ast = 1965.19 / ((π/4) x 252)

                                        =        4.00   Say    4 nos





Main reinforcement (excess reinforcement Positive)

                              Mu1    =       0.87 fyAst2(d-d’)

                    54.512x 106 =        0.87 x 415 x Ast2 x (550-50)

                    54.512 x 106 =        180525 Ast2

                              Ast                =        301.97 mm2

No of bars required         =        Ast / ast

=        301.96 / ((π/4) x 252)

                                        =        0.62   Say    1 nos

Provide 5 nos of bars #25 at the Bottom tension face at centre of span section.

Asc calculation:-

Main reinforcement (Negative)

                              Mu       =       fsc Asc (d-d’)

                    d’/d              =        50/550         =0.09

                    fsc                         =            353.40N/m2

                    170.806x 106 =      353.40 x Asc x (550-50)

                              Ast                =        966.64 mm2

No of bars required         =        Ast / ast =      966.64 / ((π/4) x 252)

                                        =        1.97   Say    2 nos

Provide 2 Nos of bars #25 at the top tension face near support



6. DESIGN OF COLUMN  

6.1 GENERAL

                    From the STAAD Pro Analysis done we obtain the maximum positive moment, maximum negative moment and maximum shear force from these the beams are designed manually.

Maximum moments and shear forces

Beam  node    Env     Fx           Fy             Fz        Mx      My        Mz

                                 kN           kN           kN       kNm     kNm       kNm

231       86                +ve    3513.2         94.90        100.4                  1.33                 277.73 233.99

                       -ve   -63.88      -104.1                     -114.8                 -1.32   -248.0     -253.11

                                            

6.2. DESIGN OF COLUMNS BY MANUAL (Beam No: 231):

Beam size                        =       450 x 450mm       

Concrete grade                 =        M25

Steel grade                       =        Fe415

Factored load Puz             =        2477.56kN

Factored Moment Muz      =        11.747kN.m

         Muy     =        262.42kN.m

Moments due to minimum eccentricity are less than the values given above

Reinforcement is distributed equally on four sides

As a first trail assume the reinforcement P     = 3.75

                                        P/fck                        = 3.75/25 = 0.15

Uniaxial moment capacity of the section about XX and YY axis

Effective cover      d’       =        cover +dia of rod/2

                                        =        40+25/2 = 52.5mm

Effective depth      d        =        450-25-(25/2)

                              d        =        412.50mm

                              D       =        450mm

d’/D             =        52.5/450

=        0.1167

Check for d’/D 0.15 will be used

Pu/fck bd                 =        2477.56 x 103/ (25 x 450 x

                                                                      450)

                                                            =        0.49

Referring to chart45

Mu/ fck bd2              =        0.135

Mux1 = Muy1           =        0.135 x 25 x 450 x 4502

                                                            =        307.55kN.m

7. DESIGN OF FOUNDATION:

7.1 GENERAL

                    The outer Column footings are designed as Isolated footings where as the Inner column footings are designed as Combined footings. In these combined footings the two adjacent columns are combined in the Z axis direction. From the STAAD Pro  analysis done we obtain the Axial load for the designing of footing

7.2 Design of combined footing: - (Node No: 89 and 91)



Axial load Pu1        =        3900.68 say 4000kN


Axial load
Pu2         =        3938.35 say 4000 kN


Bearing capacity of soil             =        250 kN/m2

To find length of footing

Taking moment about B,

4000 x 6.5 + 172 + 160   =        8000 X

                    X                 =        3.29m

Taking AB                       =        0.75m                                                  7.2.1plan

Total length up to CG from A    =3.29m+0.75m

=4.04m

Length of footing                      =        2(m+n)

                                        =        2(0.75+3.29) = 8.08m

Length of projection CD            =        0.83m

Taking 10% of total weight as self weight of foundation

Bearing area required                 =        (8000+800) / 250

                                                            =        35.20 m2

Width of foundation                  =        35.20 / 8.08

                                                            =        4.36 m say 4.50m

Footing Area                   =        8.08 x 4.50 = 36.36 m2

Net upward soil pressure           =        8000 / 36.36

=        220.02kN/m2        

Net upward soil pressure           <        safe bearing capacity

                              220.02 kN/m2        <        250 kN/m2

                    Hence safe.

Bearing area per meter length    =        220.02 x 4.50

=        990.09kN/m2


To find Shear force,


SF @ A                 =0

SF @ B left            =742.57kN

SF @ B right         =-3257.43kN

SF @ C left            =3178.15 kN

SF @ C right         =-821.85 kN

SF @ D                 =        0                                     

To find shear force at Zero                         7.2.2.SFD &BMD

4000 – (0.75 x 990.09) – 990.09x = 0

                              X       =        3.29m

To find Longitudinal bending moment:-

Maximum hogging Bending moment,

M max           =        990.09 x 4.042 / 2 – 4000x3.29– 172

                                        =        -5252.08 kNm

Max sagging Bending moment:-

At Support, B

Mx                         =        990.09 x 0.75 2/ 2 -172  

=        106.46kN.m

At support C,

Mu                         =        990.09 x 0.832 / 2           

=        341.04kN.m

Thickness of footing based on shear:-

The effective thickness of footing may be determined by considering that the shear is resisted without shear reinforcement as follows,

                              Vumax =        c b.d

                              d        =        Vumax / c b

For one way Shear:-

Vumax = Max ultimate shear at the section at distance‘d’

    from the inner face of pedestal of column C2.

                              =3178.15 – 990.09d

                    bo       =        B        =        4500mm

                    vu     =        shear strength of concrete in foundation slab

=        Ks which may taken as 1.0, and shear strength of concrete which may be taken as its minimum value of 0.25 N/mm2

                              =        0.25 N/mm2

dx1000        =        (3178.15 – 990.09d) x 1000 / (0.25 x 4500)

          1125000d    =        3178.15 x103 – 990.09x103 d

                    d        =        1.50 m        

=        1500mm. Say 1540mm

Over all depth        =        1600mm     

DESIGN FOR MOMENTS:-

The bottom reinforcement for transverse moments is placed below the bottom reinforcement for longitudinal moment. Distribution reinforcement in transverse direction.

                                        =        0.12% of gross sectional area

                                        =        (0.12 / 100) x1000 x 1300

                                        =        1560mm2                                             Provide 20mm # @ 200mmc/c

Use 20mm φ rods

                    Spacing        =        (314.15 / 1560) x 1000

                                        =        201.38mm say 200mm

1)     3d = 3 x 1240 = 3720mm

2)    And  mm300

Which ever is minimum

Provide 20mm #@200mmc/c

Ast Calculation:-

Longitudinal span moment:-

Mu    = 0.87 fy Ast d (1- (fyAst/fck bd))

5252.08 x 106 = 0.87 x 415 x Ast x 1240 (1- (415 x Ast / 25x4500x1240))

5252.08 x 106 = 447702 Ast – 1.33 Ast2

               Ast      = 12171.28mm2



Provide min Ast

                              =        0.12% of gross sectional area

                              =        (0.12 / 100) x4500 x 1240        =6696mm2

Ast per meter length         =        (12171.28 / 4.5) = 2704.73mm2          /m     

Use 25 mm φ rods

                    Spacing        =        (490.57 / 2704.43) x 1000

                                        =        181.49 mm Say 180 mm c/c

Provide 25mm # @ 180mmc/c

Support moment:-

                              Mu      =       0.87 fy Ast d (1- (fyAst/fckbd))

          341.04 x 106               =        447702 Ast – 1.33 Ast2

                                             Ast      =        763.49 mm2 < 6696 mm2

Ast per meter length         =        (6696 / 4.5) =1488mm2/m                 

Use 20 mm φ rods

                    Spacing        =        (314 / 1488) x 1000

                                        =        211.13 mm Say 200 mm c/c

Provide 20mm # @ 200mmc/c

7.3. DESIGN OF ISOLATED FOOTING:-

DATA FOR DESIGN:

Axial load                                            =        1541.4kN say 1800kN

Moment, Mx                                        =        141.271 kN

Moment, Mz                                         =        -141.19kN

Safe bearing capacity of soil                =        250kN/m2   

Area required for foundation               =        1800 / 250


                                                            =        7.2m2


               Area required         =        LxB

                    BxB             =        7.2m2

                    B2                =        7.2m2

                    B                  =        2.68m

                    L                  =        2.68m

Length required               =        2.68 m                   7.2.

Breadth required              =        2.68 m                             7.3.1. Plan

Length provided              =        2.70 m

Breadth provided             =        2.70m

Original area                    =        2.70m x 2.70m

=        7.29 m2



Column size:-

Length                   =        0.45m

 Width                   =        0.45m         

Self weight of the footing:-

Unit weight of concrete                       =        25.00kN/m3

Depth below Ground level                   =        2.40m

Depth of footing @ face of column     =        1.00m

Depth of footing @ Edge of footing    =        0.30m

Volume of footing:-

Volume of frusta of pyramids and concrete,

= (1.00 – 0.30) / 3 ((0.45 x 0.45) + (2.70x 2.70) +                            (0.45 x 0.45 x 2.70 x 2.70)

                              =1.559m3

Thickness of footing required against bending moments:-

Mumax          =        Qubd2

431.52 x 106=        0.138 x25x 2700x d2

          d        =        215.23mm Say 220mm            

          D       =        220+ 60         =      280mm

Upward soil pressure at B           =       203.86 + (203.06 – 289.98) / 2.7

 X (2.7 -1.125-0.45)

                                                   =       240.102kN/m2

Mux = Muy    =        Pnu Lx ((B-b) 2/ 8)

                                                  =        240.102 x 2.7 x (2.7-0.45)2 / 8

=        410.24kNm

Maximum Bending moment @ face of column =    410.24kNm


Thickness of footing required against bending moments:-


Mumax          =        Qubd2

410.24 x 106=        0.138x25x2700 xd2

d        =         (410.24 x 106) / 0.138x25x2700

          =        209.85 mm say220mm

D       =        220 + 60     

=        280mm                                            7.3.2 one way shear plan

Check for Effective depth required against shear:-

The critical section of shear is taken at a distance of‘d’ from the pedestal

                    Vu max          =Pu B ((L-a)/2) –d)

=252.56 x 2.70 x (2.70- 0.45) /2 –d)

                                        =681.912(1.125 –d)

Vumax =767.15 – 681.91 d

The total shear stress induced at critical section is resisted by the shear stress, developed by concrete section,


   حcu        =        Ks.   حc        


                    Ks      =        0.5 + βc



                              =        0.5 + (0.45 /0.45)


                              =        1.50 >1

                    Ks      =        1

                      حc       =        0.25 fck    

                    =        1.25N/mm2                  7.3.2 critical section plan

                     حcu       =        1x1.25

=        1.25N/mm2

حvu               =        (Vumax/bd)            

                              حvu               =        (767.15 – 681.91d)/2700 x d

                                حvu               =             حcu

                                             1.25x103      =        (767.15 – 681.91d)/2.70d

                                        d        =        0.189m

                                        d        =        189 mm 

                                        D       =        250mm


Check for Effective depth required against two way shear (or) punching shear. The critical section of two way shear is taken at a distance of d/2 around form the pedestal


Vumax =       Pnu ((LxB – (a+d) (b+d))

=        252.56(2.70x2.70 –

          (0.45+d)(0.45+d))

=        252.56(7.088-d2-0.9d)         7.3.3 Two way shear plan     =          1719.27 – 218.30d – 252.56 d2

vu               =        (Vumax)/(2(a+d)+2(b+d))d)       

                    =        1719.27 – 218.30d – 252.56 d2 /

                              (2(0.45+d) +2(0.45+d)) x d

1.25 x 103 (1.8d + 4d2)    =        1719.27 – 218.30d – 252.56 d2

5252.56 d2 + 2468.30 d – 1719.21     =        0                                         

                                        d                  =        384mm say 390mm

                                        D                 =        450mm                                      Provide maximum depth  d        =        450mm                                     

Reinforcement along x direction:-

                    Mu                =       0.87 fy Astd(1- (fyAst/fck bd))

431.52 x 106               =        0.87 x 415 x Ast x 390(1- (415 x

Ast / 25x2700x390))

                                                       Ast      =        3228.94mm2

Provide 20mm dia bars.

No of bar                         =        3228.94 / ((π /4) x 202)  

                                        =        10.28 nos Say 11nos

CONCLUSION

Our project deals with planning, analysis and  design of shopping complex using STAAD Pro at Vadapalani, Chennai.



The shopping complex is designed with all necessary facilities such as shops, super markets, coffee shops, Food courts, offices, Escalators, Lifts etc., as per BIS specifications.



In this project, the Analysis of frame is done by stiffness matrix method using STAAD Pro. Software.



 Design of footings, columns, beams & slabs are done manually by limit state method as per IS456 – 2000, IS 1893-2002   and SP16.





















                             


1 comment:

  1. All sites are working.. This is great thing..A huge thanks from my side…:)


    Boom Lift Rental In Pune

    ReplyDelete